INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Customer:	
Model Name:	AT102TN03 V.8
SPEC NO .:	A102-03-TT-84
Date:	2010/01/18
Version:	04

Preliminary Specification Final Specification

For Customer's Acceptance

Approved by	Comment

Approved by	Reviewed by	Prepared by
Joe Lin 2010/01/	James Yu Jack Huang 2010/01/	David Lee 2010/01/

InnoLux copyright 2004 All rights reserved, Copying forbidden.

Record of Revision

Version	Revise Date	Page	Content
Pre-Spec. 01	2009/03/26		Initial Release
Final-Spec.01	2009/08/17		The First Final Specification
		1	Add LCM weight
Final-Spec.02	2009/09/17	6	Modify Power voltage
		7	Modify Power voltage
		7	M <mark>odify</mark> Input signal voltage
		8	Modify Current for Driver
Final-Spec.03	2009/12/11	5	Modify The Color Of Light bar Wire
Final-Spec.04	2010/01/18	24	Modify Mechanical Drawing

Contents:

1.	General Specifications	1
2.	Pin Assignment	2
	2.1. TFT LCD Panel Driving Section	2
	2.2. Backlight Unit Section	5
3.	Operation Specifications	6
	3.1. Absolute Maximum Rating	6
	3.1.1 Typical Operation Conditions	7
	3.1.2 Current Consumption	8
	3.1.3 Backlight Driving Conditions	
	3.2 Power Sequence	9
	3.3 Timing Characteristics	
	3.3.1 Timing Conditions	
	3.3.2 Timing Diagram	11
4.	Optical Specifications	18
5.	Reliability Test Items	22
6.	General Precautions	
	6.1 Safety	23
	6.2 Handling	23
	6.3 Static Electricity	
	6.4 Storage	23
	6.5 Cleaning	23
7	Mechanical Drawing	
8	Package Drawing	25
	8.1 Packaging Material Table	25
	8.2 Packaging Quantity	25
	8.3 Packaging Drawing	26

版權贏於詳劇所有。禁止任何未經授權的使用

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	10.2 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800 × 3(RGB) × 480	
4	Display mode	Normally white, Transmissive	
5	Dot pitch	0.0925(W) × 0.276(H) mm	
6	Active area	222.0(W) × 132.48(H) mm	
7	Module size	235.0(W) × 145.8(H) ×6.1(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight power consumption	1.86W(Typ.)	
12	Panel power consumption	0.25W(Typ.)	
13	Weight	332g(Тур.)	

Note 1: Refer to Mechanical Drawing.

版權贏於群劇所有,禁止任何未經授權的使用。

2. Pin Assignment

2.1. TFT LCD Panel Driving Section

FPC connector is used for the module electronics interface. The recommended model is "AF 730L-A2G1T" manufactured by P-TWO.

Pin No.	Symbol	I/O	Function	Remark
1	POL	I	Polarity selection	
2	STVD	I/O	Vertical start pulse input when U/D= H	Note 1
3	OEV	I	Output enable	
4	CKV	I	Vertical clock	
5	STVU	I/O	Vertical start pulse input when U/D= L	Note 1
6	GND	Р	Power ground	
7	EDGSL	1	Select rising edge or rising/falling edge	
8	V _{CC}	Р	Power supply for digital circuit	
9	V9		Gamma voltage level 9	
10	V _{GL}	Р	Gate OFF voltage	
11	V2		Gamma voltage level 2	
12	V_{GH}	Р	Gate ON voltage	
13	V6		Gamma voltage level 6	
14	U/D	× .	Up/down selection	Note 1,2
15	V _{COM}	I	Common voltage	
16	GND	Р	Power ground	
17	AV _{DD}	Ρ	Power supply for analog circuit	
18	V14		Gamma voltage level 14	
19	V11	-	Gamma voltage level 11	
20	V8	I	Gamma voltage level 8	
21	V5	I	Gamma voltage level 5	
22	V3	I	Gamma voltage level 3	
23	GND	Р	Power ground	
24	R5	I	Red data(MSB)	
25	R4	Ι	Red data	
26	R3	I	Red data	
27	R2	I	Red data	
28	R1	I	Red data	

旅催偏於駐開商有,產止性何不經按懂的使用

29	R0	I	Red data(LSB)	
30	GND	Р	Power ground	
31	GND	Р	Power ground	
32	G5	I	Green data(MSB)	
33	G4	I	Green data	
34	G3	I	Green data	
35	G2	I	Green data	
36	G1	I	Green data	
37	G0	I	Green data(LSB)	
38	STHL	I/O	Horiz <mark>ontal</mark> start pulse input when R/L = L	Note 1
39	REV	Р	Control signal are inverted or not	Note 3
40	GND	I	Power ground	×
41	DCLK	Ι.,	Sample clock	
42	V _{CC}	Р	Power supply for digital circuit	
43	STHR	I/O	Horizontal start pulse input when R/L = H	Note 1
44	LD		Latches the polarity of outputs and switches the new data to outputs	
45	B5	I.	Blue data (MSB)	
46	B4		Blue data	
47	B3	Ś	Blue data	
48	B2	1	Blue data	
49	B1	I	Blue data	
50	B0	I	Blue data (LSB)	
51	R/L	1	Right/ left selection	Note 1,2
52	V1		Gamma voltage level 1	
53	V4		Gamma voltage level 4	
54	V7	I	Gamma voltage level 7	
55	V10	Ι	Gamma voltage level 10	
56	V12	I	Gamma voltage level 12	
57	V13	Ι	Gamma voltage level 13	
58	AV _{DD}	Р	Voltage for analog circuit	
59	GND	Р	Power ground	
60	V _{COM}	I	Common voltage	

I: input, O: output, P: Power

版權贏於詳創所有.禁止任何未經授權的使用

Note 1: Selection of scanning mode

版權關於群創所有,禁止任何未經授權的使用

Bottom

2.2. Backlight Unit Section

LED Light Bar connector is used for the the integral backlight system. The recommended model is "BHSR-02VS-1" manufactured by JST.

Pin No.	Symbol	I/O	Function	Remark
1	V _{LED+}	Р	Power for LED backlight anode	Pink
2	V _{LED-}	Р	Power for LED backlight cathode	White

版權屬於群創所有。禁止任何未經授權的使用

3. Operation Specifications

3.1. Absolute Maximum Rating

			(Note 2	2)	
ltem	O much a l	Val	Unit	Remark	
item i	Symbol	Min.	Max.		Remark
	V_{CC}	-0.3	5	V	
	AV_{DD}	-0.5	12	V	
Power voltage	V_{GH}	13	19	V	
	V _{GL}	-12	-2	v	
	V_{GH} - V_{GL}) - (31	V	54
Input signal voltage	V1~V7	0.4 AV _{DD}	AV _{DD} -0.1	V	Note 1
Input signal voltage	V8~V14	-0.3	0.6AV _{DD}	V	
Operation temperature	Τ _{ΟΡ}	-30	85		
Storage temperature	Т _{ST}	-30	85		
LED Reverse Voltage	Vr		1.2	V	Each LED Note 3
LED Forward Current	lf		25	mA	Each LED

- Note 1: $AV_{DD} 0.1 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge V6 \ge V7 \ge V8 \ge V9 \ge V10 > V11 \ge V12 \ge V13 \ge V14 \ge AVSS + 0.1$
- Note 2: The absolute maximum rating values of the module should not be exceeded. Once exceeded absolute maximum rating values, the characteristics of the module may not be recovered. Even in an extreme condition, may result in module permanently destroyed.
- Note 3: Vr conditions: Zener Diode 20mA.

版權贏於群創所有,禁止任何未經授權的使用

3.1.1 Typical Operation Conditions

		r	()	Note 1)		
Item	Symbol		Values	Unit	Remark	
nem		Min.	Тур.	Max.	Unit	Kemark
	V_{CC}	3.0	3.3	3.6	V	
Power veltage	AV_{DD}	9.0	9.2	9.4	V	
Power voltage	V_{GH}	15.3	16.0	16.7	V	
	V_{GL}	-7.7	-7.0	-6.3	V	
	V _{COM}	3.65	3.85	4.05	V	(V1+V14)/2 =4.5V
Input signal voltage	V1~V7	0.4 AV _{DD}		AV _{DD} -0.1	V	
	V8~V14	0.1	-	0.6 AV _{DD}	V	
Input logic high voltage	VIH	0.7V _{CC}	-	V _{cc}	V	
Input logic low voltage	V _{IL}	0	24	0.3V _{CC}	V	

Note 1: Be sure to apply GND, V_{CC} , and V_{GL} , to the LCD first, and then apply V_{GH} .

Col

版權關於群劇所有,禁止任何未經授權的使用

3.1.2 Current Consumption

ltem	Symbol		Values		Unit	Remark	
nem	Symbol	Min.	Тур.	Max.		Remark	
Current for Driver	I _{GH}	-	0.3	0.5	mA	V _{GH} =16V	
	I _{GL}	-	0.2	1.0	mA	V _{GL} = -7V	
	I _{CC}	<u> </u>	4	10	mA	V _{CC} =3.3V	
	IAV _{DD}	-	25	50	mA	AV _{DD} =9.2V	

3.1.3 **Backlight Driving Conditions**

3.1.3 Backlight D		.0				
Item	Symbol	Values			Unit	Remark
nem		Min.	Тур.	Max.	Onit	Rentark
LED forward voltage	VL	8.4	9.3	10.5	V	Note 1
LED forward current	I.	180	200	220	mA	
LED life time	-	20,000	10	_	Hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 and I₁ =200mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 and IL = 200mA. The LED lifetime could be decreased if operating I_{L} is larger than 200 mA.

3.2 Power Sequence

VCC→VGL→AVDD→VGH→Data→B/L

$B/L \rightarrow Data \rightarrow VGH \rightarrow AVDD \rightarrow VGL \rightarrow VCC$

Note: Data includes POL, STVD, OEV, CKV, STVU, EDGSL, STHL, REV, DCLK, , STHR, LD.

版權贏於詳劇所有,禁止任何未經授權的使用。

3.3Timing Characteristics

3.3.1 Timing Conditions

lán m	Symbol	Values			11	Design
ltem		Min.	Тур.	Max.	Unit	Remark
DCLK frequency	F _{dclk}		40	45	MHz	
DCLK cycle	T _{cph}	22	25	->	ns	
DCLK pulse width	T _{cw}	8	-	-	ns	
Data set-up time	T _{su}	4	- 1	_	ns	
Data hold time	T _{hd}	2	1-	-	ns	
Time that the last data to LD	T _{ld}	1	-		Tcph	
Pulse width of LD	T _{wld}	2		2.5	Tcph	
Time that LD to STHL/R	T _{lds}	5	- 1		Tcph	
POL set-up time	T _{psu}	6	-	A.	ns	
POL hold time	T _{phd}	6	150	-	ns	
CKV frequency	F _{vclk}	-	5	200	KHz	
CKV rise time	T _{rck}	-	-	100	ns	
CKV falling time	T _{fck}	Y	-	100	ns	
CKV pulse width	P _{WCLK}	500	-	-	ns	
Horizontal display timing range	T _{dh}	-	800	-	Tcph	
Horizontal timing range	T _h	-	1056	-	Tcph	
STVU/D setup time	T _{suv}	200	-	-	ns	
STVU/D hold time	T _{hdv}	300	-	-	ns	
STVU/D delay time	T _{dt}	-	-	500	ns	
Driver output delay time	T _{do}	-	-	900	ns	
Output rise time	T _{tlh}	-	500	1000	ns	
Output falling time	T _{thl}	-	400	800	ns	
OEV pulse width	T _{wcl}	1	-	-	us	
OEV to Driver output delay time	T _{oe}	-	-	900	ns	
Horizontal lines per field	Τ _v	512	525	610	Line	
Vertical display timing range	T _{vd}	-	480	_	Line	

版權關於詳創所有,禁止任何未經授權的使用

Timing Diagram1

3.3.2 Timing Diagram

版權屬於群創所有。禁止任何未經授權的使用

版權關於群創所有,禁止任何未經授權的使用

版權關於群劇所有。禁止任何未經授權的使用

版權關於群創所有,禁止任何未經授權的使用

۰

Fig.3-6 Vertical timing (from up to down)

版權贏於詳創所有。禁止任何未經授權的使用

版權關於群劇所有,禁止任何未經授權的使用

4.Optical Specifications

ltem	Symbol	Condition	Values			Unit	Remark	
nem	Symbol	Condition	Min.	Тур.	Max.	Onit	Keinark	
Viewing angle (CR≥10)	θ_{L}	Φ=180°(9 o'clock)	55	65	-			
	θ_{R}	Φ=0°(3 o'clock)	55	65	-	degree	Note 1	
	θτ	Φ=90°(12 o'clock)	35	45	-	uegree	Note 1	
	θΒ	Φ=270°(6 o'clock)	55	65	-			
Response time	T _{ON}		-	15	30	msec	Note 3	
	T _{OFF}		-	20	40	msec	Note 3	
Contrast ratio	CR		250	300		-	Note 4	
Color chromaticity	W _X	Normal $\theta = \Phi = 0^{\circ}$	0.26	0.31	0.36	-	Note 2	
	W _Y		0.28	0.33	0.38	-	Note 5 Note 6	
Luminance	-		280	350	-	cd/m ²	Note 6	
Luminance uniformity	Υ _U		70	75	-	-	Note 7	

Test Conditions:

- 1. V_{CC} =3.3V, I_L=200mA (Backlight current), the ambient temperature is 25 \Box .
- 2. The test systems refer to Note 2.

版權關於群劇所有,禁止任何未經授權的使用

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD on the "White" state}{Luminance measured when LCD on the "Black" state}$

- Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.
- Note 6: All input terminals LCD panel must be ground when measuring the center area of the panel. The LED driving condition is $I_L=200$ mA.

版權關於群創所有。禁止任何未經授權的使用

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Fig. 4-4 Definition of measuring points

B_{max}: The measured maximum luminance of all measurement position. **B**_{min}: The measured minimum luminance of all measurement position.

版權關於群劇所有,禁止任何未經授權的使用

5. Reliability Test Items

	(Note3)				
Item	Test Conc	Remark			
High Temperature Storage	Ta = 85 □	240 hrs	Note 1,Note 4		
Low Temperature Storage	Ta = -30 □	240hrs	Note 1,Note 4		
High Temperature Operation	Ts = 85□	240hrs	Note 2,Note 4		
Low Temperature Operation	Ta = -30 □	240hrs	Note 1,Note 4		
Operate at High Temperature and Humidity	+60□, 90%RH	240 hrs	Note 4		
Thermal Shock	-30 /30 min ~ +85 /30 r cycles, Start with cold ter with high temperature	Note 4			
Vibration Test	Frequency range:10~55H Stroke:1.5mm Sweep:10Hz~55Hz~10H 2 hours for each direction (6 hours for total)				
Mechanical Shock	100G 6ms,±X, ±Y, ±Z 3 t direction				
Package Vibration Test	Random Vibration : 0.015G*G/Hz from 5-200 from 200-500HZ 2 hours for each direction (6 hours for total)				
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6 surfa				
Electro Static Discharge	± 2KV, Human Body M				

Note 1: Ta is the ambient temperature of samples.

- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.
- Note 4: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.

6.General Precautions

6.1 Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2 Handling

1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.

2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.

3. To avoid contamination on the display surface, do not touch the module surface with bare hands.

4. Keep a space so that the LCD panels do not touch other components.

5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.

6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.

7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3 Static Electricity

1. Be sure to ground module before turning on power or operating module.

2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4 Storage

1. Store the module in a dark room where must keep at $+25\pm10$ and 65%RH or less.

2. Do not store the module in surroundings containing organic solvent or corrosive

gas.

3. Store the module in an anti-electrostatic container or bag.

6.5 Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

版權屬於群創所有,禁止任何未經授權的使用

7 Mechanical Drawing

8 Package Drawing

8.1 Packaging Material Table

No	ltem	Model (Material)	Dimensions (mm)	Unit Weight (kg)	Quantity	Remark
1	LCM module	AT102TN03 V.8	235 × 145.8 × 6.1	0.332	25pcs	
2	Partition	BC Corrugated paper	<mark>512</mark> × 349 × 226	1.154	1 set	
3	Corrugated Bar	B Corrugated paper	5 <mark>12 ×</mark> 370 × 7	0.220	2 pcs	
4	Dust-Proof Bag	PE	900 × 700 × 0.05	0.010	1 pcs	
5	A/S Bag	PE	256 × 2 <mark>03 ×</mark> 0.07	0.010	25 pcs	10 ⁹ ∼ 10 ¹¹ Ω/sq
6	Carton	Corrugated paper	530 × 355 × 255	0.810	1 pcs	
7	Total weight	10.964 ± 5%				

8.2 Packaging Quantity

Total LCM quantity in Carton: no. of Partition 1 Rows x quantity per Row 25 = 25

版權關於群劇所有,禁止任何未經授權的使用

8.3 Packaging Drawing

版權關於群創所有。禁止任何未經授權的使用